Algorithmic Construction of Hyperfunction Solutions to Invariant Differential Equations on the Space of Real Symmetric Matrices
نویسندگان
چکیده
This is the second paper on invariant hyperfunction solutions of invariant linear differential equations on the vector space of n × n real symmetric matrices. In the preceding paper [22], we proved that every invariant hyperfunction solution is expressed as a linear combination of Laurent expansion coefficients of the complex power of the determinant function with respect to the parameter. Fundamental properties of the complex power have been investigated in [19]. In this paper, we give algorithms to determine the space of invariant hyperfunction solutions and apply the algorithms to some examples. These algorithms enable us to compute in a fully constructive way all the invariant hyperfunction solutions for all the invariant differential operators in terms of Laurent expansion coefficients of the complex power of the determinant function.
منابع مشابه
The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملVan Den Ban-schlichtkrull-wallach Asymptotic Expansions on Non-symmetric Domains
Let X = G/K be a homogeneous Riemannian manifold where G is the identity component of its isometry group. A C∞ function F on X is harmonic if it is annihilated by every element of DG(X), the algebra of all G-invariant differential operators without constant term. One of the most beautiful results in the harmonic analysis of symmetric spaces is the Helgason conjecture, which states that on a Rie...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کامل